The Orai-1 and STIM-1 Complex Controls Human Dendritic Cell Maturation
نویسندگان
چکیده
Ca(2+) signaling plays an important role in the function of dendritic cells (DC), the professional antigen presenting cells. Here, we described the role of Calcium released activated (CRAC) channels in the maturation and cytokine secretion of human DC. Recent works identified STIM1 and Orai1 in human T lymphocytes as essential for CRAC channel activation. We investigated Ca(2+) signaling in human DC maturation by imaging intracellular calcium signaling and pharmalogical inhibitors. The DC response to inflammatory mediators or PAMPs (Pathogen-associated molecular patterns) is due to a depletion of intracellular Ca(2+) stores that results in a store-operated Ca(2+) entry (SOCE). This Ca(2+) influx was inhibited by 2-APB and exhibited a Ca(2+)permeability similar to the CRAC (Calcium-Released Activated Calcium), found in T lymphocytes. Depending on the PAMPs used, SOCE profiles and amplitudes appeared different, suggesting the involvement of different CRAC channels. Using siRNAi, we identified the STIM1 and Orai1 protein complex as one of the main pathways for Ca(2+) entry for LPS- and TNF-α-induced maturation in DC. Cytokine secretions also seemed to be SOCE-dependent with profile differences depending on the maturating agents since IL-12 and IL10 secretions appeared highly sensitive to 2-APB whereas IFN-γ was less affected. Altogether, these results clearly demonstrate that human DC maturation and cytokine secretions depend on SOCE signaling involving STIM1 and Orai1 proteins.
منابع مشابه
The role of STIM and ORAI proteins in phagocytic immune cells.
Phagocytic cells, such as neutrophils, macrophages, and dendritic cells, migrate to sites of infection or damage and are integral to innate immunity through two main mechanisms. The first is to directly neutralize foreign agents and damaged or infected cells by secreting toxic substances or ingesting them through phagocytosis. The second is to alert the adaptive immune system through the secret...
متن کاملSTIM and ORAI proteins in the nervous system.
Stromal interaction molecules (STIM) 1 and 2 are sensors of the calcium concentration in the endoplasmic reticulum. Depletion of endoplasmic reticulum calcium stores activates STIM proteins which, in turn, bind and open calcium channels in the plasma membrane formed by the proteins ORAI1, ORAI2, and ORAI3. The resulting store-operated calcium entry (SOCE), mostly controlled by the principal com...
متن کاملThe Effects of Candida Albicans Cell Wall Protein Fraction on Dendritic Cell Maturation
Back ground: Candida albicans is a member of the normal human microflora. C. albicans cell wall is composed of several protein and carbohydrate components which have been shown to play a crucial role in C. albicans interaction with the host immune system. Major components of C. albican cell wall are carbohydrates such as mannans, β glucans and chitins, and proteins that partially modulate the h...
متن کاملReference Redox modulation of STIM - ORAI signaling BHARDWAJ , Rajesh , HEDIGER , Matthias A , DEMAUREX , Nicolas
STIM1 and ORAI1 constitute the core machinery of the ubiquitous store-operated calcium entry pathway and loss of function in these proteins is associated with severe immune and muscular disorders. Other isoforms-STIM1L, STIM2, ORAI2 and ORAI3 exhibit varied expression levels in different cell types along with several other interaction partners and thereby play different roles to facilitate, reg...
متن کاملMolecular mechanisms of STIM/Orai communication.
Ca(2+)entry into the cell via store-operated Ca(2+)release-activated Ca(2+)(CRAC) channels triggers diverse signaling cascades that affect cellular processes like cell growth, gene regulation, secretion, and cell death. These store-operated Ca(2+)channels open after depletion of intracellular Ca(2+)stores, and their main features are fully reconstituted by the two molecular key players: the str...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013